Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.955
Filtrar
1.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607058

RESUMO

During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10-4 M) for nitric oxide synthases, ODQ (10-5 M) for guanylate cyclase, Verapamil (10-5 M) for the L-type calcium channel, Ryanodine (10-5 M) + 2-APB (3 × 10-5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10-5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE.


Assuntos
Cálcio , Artéria Uterina , Ratos , Gravidez , Feminino , Animais , Artéria Uterina/metabolismo , Cálcio/metabolismo , Azeite de Oliva/farmacologia , Óxido Nítrico/metabolismo , Placenta/metabolismo , Rianodina , Fenóis/farmacologia , Dilatação , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Endotélio/metabolismo
2.
Int J Biol Macromol ; 260(Pt 1): 129424, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219929

RESUMO

Calcins are a group of scorpion toxin peptides specifically binding to ryanodine receptors (RyRs) with high affinity, and have the ability to activate and stabilize RyR in a long-lasting subconductance state. Five newly calcins synthesized compounds exhibit typical structural characteristics of a specific family through chemical synthesis and virtual analysis. As the calcins from the same species, Petersiicalcin1 and Petersiicalcin2, Jendekicalcin2 and Jendekicalcin3, have only one residue difference. Both Petersiicalcin1 and Petersiicalcin2 exhibited different affinities in stimulating [3H]ryanodine binding, but the residue mutation resulted in a 2.7 folds difference. Other calcins also exhibited a stimulatory effect on [3H]ryanodine binding to RyR1, however, their affinities were significantly lower than that of Petersiiicalcin1 and Petersiiicalcin2. The channel domain of RyR1 was found to be capable of binding with the basic residues of these calcins, which also exhibited interactions with the S6 helices on RyR1. Dynamic simulations were conducted for Petersiicalcin1 and Petersiicalcin2, which demonstrated their ability to form a highly stable conformation and resulting in an asymmetric tetramer structure of RyR1. The discovery of five newly calcins further enriches the diversity of the natural calcin family, which provides more native peptides for the structure-function analysis between calcin and RyRs.


Assuntos
Peptídeos , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sequência de Aminoácidos , Rianodina/metabolismo , Rianodina/farmacologia , Peptídeos/química , Estrutura Secundária de Proteína , Cálcio/metabolismo , Músculo Esquelético
4.
J Nat Prod ; 87(1): 104-112, 2024 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-38128916

RESUMO

Calcin is a group ligand with high affinity and specificity for the ryanodine receptors (RyRs). Little is known about the effect of its acidic residues on the spacial structure as well as the interaction with RyRs. We screened the opicalcin1 acidic mutants and investigated the effect of mutation on activity. The results indicated that all acidic mutants maintained the structural features, but their surface charge distribution underwent significant changes. Molecular docking and dynamics simulations were used to analyze the interaction between opicalcin1 mutants and RyRs, which demonstrated that all opicalcin1 mutants effectively bound to the channel domain of RyR1. This stable binding induced a pronounced asymmetry in the structure of the RyR tetramer, exhibiting a high degree of structural dissimilarity. [3H]Ryanodine binding to RyR1 was enhanced in D2A and D15A, which was similar to opicalcin1, but that effect was suppressed in E12A and E29A and reversed for the DE-4A, thereby inhibiting ryanodine binding. Opicalcin1 and DE-4A also exhibited the ability to form stable docking structures with RyR2. Acidic residues play a crucial role in the structure of calcin and its functional interaction with RyRs that is beneficial for the calcin optimization to develop more active peptide lead compounds for RyR-related diseases.


Assuntos
Sinalização do Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Simulação de Acoplamento Molecular , Mutação , Cálcio/metabolismo
5.
J Biol Chem ; 300(2): 105606, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159862

RESUMO

Previous cryo-electron micrographs suggested that the skeletal muscle Ca2+ release channel, ryanodine receptor (RyR)1, is regulated by intricate interactions between the EF hand Ca2+ binding domain and the cytosolic loop (S2-S3 loop). However, the precise molecular details of these interactions and functional consequences of the interactions remain elusive. Here, we used molecular dynamics simulations to explore the specific amino acid pairs involved in hydrogen bond interactions within the EF hand-S2-S3 loop interface. Our simulations unveiled two key interactions: (1) K4101 (EF hand) with D4730 (S2-S3 loop) and (2) E4075, Q4078, and D4079 (EF hand) with R4736 (S2-S3 loop). To probe the functional significance of these interactions, we constructed mutant RyR1 complementary DNAs and expressed them in HEK293 cells for [3H]ryanodine binding assays. Our results demonstrated that mutations in the EF hand, specifically K4101E and K4101M, resulted in reduced affinities for Ca2+/Mg2+-dependent inhibitions. Interestingly, the K4101E mutation increased the affinity for Ca2+-dependent activation. Conversely, mutations in the S2-S3 loop, D4730K and D4730N, did not significantly change the affinities for Ca2+/Mg2+-dependent inhibitions. Our previous finding that skeletal disease-associated RyR1 mutations, R4736Q and R4736W, impaired Ca2+-dependent inhibition, is consistent with the current results. In silico mutagenesis analysis aligned with our functional data, indicating altered hydrogen bonding patterns upon mutations. Taken together, our findings emphasize the critical role of the EF hand-S2-S3 loop interaction in Ca2+/Mg2+-dependent inhibition of RyR1 and provide insights into potential therapeutic strategies targeting this domain interaction for the treatment of skeletal myopathies.


Assuntos
Motivos EF Hand , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Cálcio/metabolismo , Células HEK293 , Músculo Esquelético/metabolismo , Mutação , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
6.
Exp Biol Med (Maywood) ; 248(23): 2440-2448, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38158699

RESUMO

The mammalian target of rapamycin (mTOR) inhibitors, everolimus (but not dactolisib), is frequently associated with lung injury in clinical therapies. However, the underlying mechanisms remain unclear. Endothelial cell barrier dysfunction plays a major role in the pathogenesis of the lung injury. This study hypothesizes that everolimus increases pulmonary endothelial permeability, which leads to lung injury. We tested the effects of everolimus on human pulmonary microvascular endothelial cell (HPMEC) permeability and a mouse model of intraperitoneal injection of everolimus was established to investigate the effect of everolimus on pulmonary vascular permeability. Our data showed that everolimus increased human pulmonary microvascular endothelial cell (HPMEC) permeability which was associated with MLC phosphorylation and F-actin stress fiber formation. Furthermore, everolimus induced an increasing concentration of intracellular calcium Ca2+ leakage in HPMECs and this was normalized with ryanodine pretreatment. In addition, ryanodine decreased everolimus-induced phosphorylation of PKCα and MLC, and barrier disruption in HPMECs. Consistent with in vitro data, everolimus treatment caused a visible lung-vascular barrier dysfunction, including an increase in protein in BALF and lung capillary-endothelial permeability, which was significantly attenuated by pretreatment with an inhibitor of PKCα, MLCK, and ryanodine. This study shows that everolimus induced pulmonary endothelial hyper-permeability, at least partly, in an MLC phosphorylation-mediated EC contraction which is influenced in a Ca2+-dependent manner and can lead to lung injury through mTOR-independent mechanisms.


Assuntos
Células Endoteliais , Lesão Pulmonar , Animais , Camundongos , Humanos , Células Endoteliais/metabolismo , Everolimo/farmacologia , Everolimo/metabolismo , Lesão Pulmonar/patologia , Endotélio Vascular , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/farmacologia , Rianodina/metabolismo , Rianodina/farmacologia , Pulmão/metabolismo , Fosforilação , Células Cultivadas , Serina-Treonina Quinases TOR/metabolismo , Mamíferos
7.
Cell Calcium ; 116: 102821, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37949035

RESUMO

Ryanodine receptors (RyR) are intracellular Ca2+ channels localized in the endoplasmic reticulum, where they act as critical mediators of Ca2+-induced Ca2+ calcium release (CICR). In the brain, mammals express in both neurons, and non-neuronal cells, a combination of the three RyR-isoforms (RyR1-3). Pharmacological approaches, which do not distinguish between isoforms, have indicated that RyR-isoforms contribute to brain function. However, isoform-specific manipulations have revealed that RyR-isoforms display different subcellular localizations and are differentially associated with neuronal function. These findings raise the need to understand RyR-isoform specific transcriptional regulation, as this knowledge will help to elucidate the causes of neuronal dysfunction for a growing list of brain disorders that show altered RyR channel expression and function.


Assuntos
Retículo Endoplasmático , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Encéfalo/metabolismo , Cálcio/metabolismo , Isoformas de Proteínas/metabolismo , Rianodina/metabolismo , Mamíferos/metabolismo
8.
ACS Chem Biol ; 18(10): 2290-2299, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37769131

RESUMO

Hyperactivity of cardiac sarcoplasmic reticulum (SR) ryanodine receptor (RyR2) Ca2+-release channels contributes to heart failure and arrhythmias. Reducing the RyR2 activity, particularly during cardiac relaxation (diastole), is a desirable therapeutic goal. We previously reported that the unnatural enantiomer (ent) of an insect-RyR activator, verticilide, inhibits porcine and mouse RyR2 at diastolic (nanomolar) Ca2+ and has in vivo efficacy against atrial and ventricular arrhythmia. To determine the ent-verticilide structural mode of action on RyR2 and guide its further development via medicinal chemistry structure-activity relationship studies, here, we used fluorescence lifetime (FLT)-measurements of Förster resonance energy transfer (FRET) in HEK293 cells expressing human RyR2. For these studies, we used an RyR-specific FRET molecular-toolkit and computational methods for trilateration (i.e., using distances to locate a point of interest). Multiexponential analysis of FLT-FRET measurements between four donor-labeled FKBP12.6 variants and acceptor-labeled ent-verticilide yielded distance relationships placing the acceptor probe at two candidate loci within the RyR2 cryo-EM map. One locus is within the Ry12 domain (at the corner periphery of the RyR2 tetrameric complex). The other locus is sandwiched at the interface between helical domain 1 and the SPRY3 domain. These findings document RyR2-target engagement by ent-verticilide, reveal new insight into the mechanism of action of this new class of RyR2-targeting drug candidate, and can serve as input in future computational determinations of the ent-verticilide binding site on RyR2 that will inform structure-activity studies for lead optimization.


Assuntos
Depsipeptídeos , Canal de Liberação de Cálcio do Receptor de Rianodina , Camundongos , Suínos , Humanos , Animais , Rianodina/química , Rianodina/metabolismo , Rianodina/uso terapêutico , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Depsipeptídeos/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo
9.
Adv Neurobiol ; 33: 287-304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37615871

RESUMO

Ryanodine receptors (RyRs) are Ca2+ release channels located in the endoplasmic reticulum membrane. Presynaptic RyRs play important roles in neurotransmitter release and synaptic plasticity. Recent studies suggest that the proper function of presynaptic RyRs relies on several regulatory proteins, including aryl hydrocarbon receptor-interacting protein, calstabins, and presenilins. Dysfunctions of these regulatory proteins can greatly impact neurotransmitter release and synaptic plasticity by altering the function or expression of RyRs. This chapter aims to describe the interaction between these proteins and RyRs, elucidating their crucial role in regulating synaptic function.


Assuntos
Presenilinas , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Transporte Biológico , Plasticidade Neuronal , Rianodina , Neurotransmissores
10.
Am J Physiol Heart Circ Physiol ; 325(4): H720-H728, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566110

RESUMO

Ryanodine receptor 2 (RyR2) hyperactivity is observed in structural heart diseases that are a result of ischemia or heart failure. It causes abnormal calcium handling and calcium leaks that cause metabolic, electrical, and mechanical dysfunction, which can trigger arrhythmias. Here, we tested the antiarrhythmic potential of dantrolene (RyR inhibitor) in human hearts. Human hearts not used in transplantation were obtained, and right ventricular outflow tract (RVOT) wedges and left ventricular (LV) slices were prepared. Pseudo-ECGs were recorded to determine premature ventricular contraction (PVC) incidences. Optical mapping was performed to determine arrhythmogenic substrates. After baseline optical recordings, tissues were treated with 1) isoproterenol (250 nM), 2) caffeine (200 mM), and 3) dantrolene (2 or 10 mM). Optical recordings were obtained after each treatment. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Isoproterenol shortened action potential duration (APD) in the RV, RVOT, and LV regions and shortened calcium transient duration (CaTD) in the LV. Caffeine further shortened APD in the RV, did not modulate APD in the RVOT, and prolonged APD in the LV. In addition, in the LV, CaTD prolongation was also observed. More importantly, adding dantrolene did not alter APD in the RV or RVOT regions but produced a trend toward APD prolongation and significant CaTD prolongation in the LV, restoring these parameters to baseline values. In conclusions, dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates in the human heart and could be a novel antiarrhythmic therapy in patients with structural heart disease.NEW & NOTEWORTHY Ryanodine receptor 2 hyperactivity is observed in structural heart diseases caused by ischemia or heart failure. It causes abnormal calcium leaks, which can trigger arrhythmias. To prevent arrhythmias, we applied dantrolene in human hearts ex vivo. Isoproterenol and caffeine treatment increased PVC incidence, whereas dantrolene reduced the PVC burden. Dantrolene treatment suppresses triggers and reverses arrhythmogenic substrates and could be a novel antiarrhythmic therapy in patients with structural heart disease.


Assuntos
Insuficiência Cardíaca , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Dantroleno/farmacologia , Isoproterenol/farmacologia , Rianodina/farmacologia , Cálcio/metabolismo , Cafeína/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Antiarrítmicos/farmacologia , Potenciais de Ação
11.
Front Immunol ; 14: 1207249, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404822

RESUMO

Mast cell (MC) activation is implicated in the pathogenesis of multiple immunodysregulatory skin disorders. Activation of an IgE-independent pseudo-allergic route has been recently found to be mainly mediated via Mas-Related G protein-coupled receptor X2 (MRGPRX2). Ryanodine receptor (RYR) regulates intracellular calcium liberation. Calcium mobilization is critical in the regulation of MC functional programs. However, the role of RYR in MRGPRX2-mediated pseudo-allergic skin reaction has not been fully addressed. To study the role of RYR in vivo, we established a murine skin pseudo-allergic reaction model. RYR inhibitor attenuated MRGPRX2 ligand substance P (SP)-induced vascular permeability and neutrophil recruitment. Then, we confirmed the role of RYR in an MC line (LAD2 cells) and primary human skin-derived MCs. In LAD2 cells, RYR inhibitor pretreatment dampened MC degranulation (detected by ß-hexosaminidase retlease), calcium mobilization, IL-13, TNF-α, CCL-1, CCL-2 mRNA, and protein expression activated by MRGPRX2 ligands, namely, compound 48/80 (c48/80) and SP. Moreover, the inhibition effect of c48/80 by RYR inhibitor was verified in skin MCs. After the confirmation of RYR2 and RYR3 expression, the isoforms were silenced by siRNA-mediated knockdown. MRGPRX2-induced LAD2 cell exocytosis and cytokine generation were substantially inhibited by RYR3 knockdown, while RYR2 had less contribution. Collectively, our finding suggests that RYR activation contributes to MRGPRX2-triggered pseudo-allergic dermatitis, and provides a potential approach for MRGPRX2-mediated disorders.


Assuntos
Cálcio , Dermatite Atópica , Humanos , Animais , Camundongos , Cálcio/metabolismo , Rianodina/metabolismo , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Mastócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Dermatite Atópica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neuropeptídeos/metabolismo
12.
J Gen Physiol ; 155(8)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37279522

RESUMO

Dantrolene is a neutral hydantoin that is clinically used as a skeletal muscle relaxant to prevent overactivation of the skeletal muscle calcium release channel (RyR1) in response to volatile anesthetics. Dantrolene has aroused considerable recent interest as a lead compound for stabilizing calcium release due to overactive cardiac calcium release channels (RyR2) in heart failure. Previously, we found that dantrolene produces up to a 45% inhibition RyR2 with an IC50 of 160 nM, and that this inhibition requires the physiological association between RyR2 and CaM. In this study, we tested the hypothesis that dantrolene inhibition of RyR2 in the presence of CaM is modulated by RyR2 phosphorylation at S2808 and S2814. Phosphorylation was altered by incubations with either exogenous phosphatase (PP1) or kinases; PKA to phosphorylate S2808 or endogenous CaMKII to phosphorylate S2814. We found that PKA caused selective dissociation of FKBP12.6 from the RyR2 complex and a loss of dantrolene inhibition. Rapamycin-induced FKBP12.6 dissociation from RyR2 also resulted in the loss of dantrolene inhibition. Subsequent incubations of RyR2 with exogenous FKBP12.6 reinstated dantrolene inhibition. These findings indicate that the inhibitory action of dantrolene on RyR2 depends on RyR2 association with FKBP12.6 in addition to CaM as previously found.


Assuntos
Dantroleno , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Dantroleno/farmacologia , Rianodina , Bicamadas Lipídicas , Cálcio/metabolismo
13.
J Mol Cell Cardiol ; 181: 67-78, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37285929

RESUMO

Diastolic Ca2+ leak due to cardiac ryanodine receptor (RyR2) hyperactivity has been widely documented in chronic ischemic heart disease (CIHD) and may contribute to ventricular tachycardia (VT) risk and progressive left-ventricular (LV) remodeling. Here we test the hypothesis that targeting RyR2 hyperactivity can suppress VT inducibility and progressive heart failure in CIHD by the RyR2 inhibitor dantrolene. METHODS AND RESULTS: CIHD was induced in C57BL/6 J mice by left coronary artery ligation. Four weeks later, mice were randomized to either acute or chronic (6 weeks via implanted osmotic pump) treatment with dantrolene or vehicle. VT inducibility was assessed by programmed stimulation in vivo and in isolated hearts. Electrical substrate remodeling was assessed by optical mapping. Ca2+ sparks and spontaneous Ca2+ releases were measured in isolated cardiomyocytes. Cardiac remodeling was quantified by histology and qRT-PCR. Cardiac function and contractility were measured using echocardiography. Compared to vehicle, acute dantrolene treatment reduced VT inducibility. Optical mapping demonstrated reentrant VT prevention by dantrolene, which normalized the shortened refractory period (VERP) and prolonged action potential duration (APD), preventing APD alternans. In single CIHD cardiomyocytes, dantrolene normalized RyR2 hyperactivity and prevented spontaneous intracellular Ca2+ release. Chronic dantrolene treatment not only reduced VT inducibility but also reduced peri-infarct fibrosis and prevented further progression of LV dysfunction in CIHD mice. CONCLUSIONS: RyR2 hyperactivity plays a mechanistic role for VT risk, post-infarct remodeling, and contractile dysfunction in CIHD mice. Our data provide proof of concept for the anti-arrhythmic and anti-remodeling efficacy of dantrolene in CIHD.


Assuntos
Isquemia Miocárdica , Taquicardia Ventricular , Animais , Camundongos , Antiarrítmicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Dantroleno/farmacologia , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/complicações , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/etiologia
14.
Bull Exp Biol Med ; 174(6): 734-737, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37170020

RESUMO

The effect of the compound N1-(2,3,4-trimethoxy)-N2-{2-[(2,3,4-trimethoxybenzyl)amino]ethyl}-1,2-ethane-diamine (code ALM-802) on the amplitude of the Ca2+ response in the cell was studied in in vitro experiments. The concentration of intracellular calcium was assessed using a Fura-2 two-wave probe. The experiments were performed on a culture of isolated rat hippocampal neurons. The effect of compound ALM-802 on the activity of ryanodine receptors (RyR2) was studied on an isolated strip of rat myocardium. The compound ALM-802 (69.8 µM) in hippocampal neurons causes a significant decrease in the amplitude of the Ca2+ response induced by addition of KCl to the medium. Experiments performed on an isolated myocardial strip showed that compound ALM-802 (10-5 M) almost completely blocked the positive inotropic reaction of the strip to the RyR2 agonist caffeine (5×10-5 M). The data obtained indicate that the decrease in the concentration of Ca2+ ions in the cell caused by ALM-802 is due to its ability to block RyR2 located on the membrane of the sarcoplasmic reticulum, which can be associated with the antiarrhythmic activity of the compound.


Assuntos
Miocárdio , Canal de Liberação de Cálcio do Receptor de Rianodina , Ratos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Miocárdio/metabolismo , Antiarrítmicos/farmacologia , Cafeína/farmacologia , Retículo Sarcoplasmático , Cálcio/metabolismo , Rianodina/farmacologia , Rianodina/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-36740004

RESUMO

Exposure of Drosophila skeletal muscle to bacterial lipopolysaccharides (LPS) rapidly and transiently hyperpolarizes membrane potential. However, the mechanism responsible for hyperpolarization remains unclear. The resting membrane potential of the cells is maintained through multiple mechanisms. This study investigated the possibility of LPS activating calcium-activated potassium channels (KCa) and/or K2p channels. 2-Aminoethyl diphenylborinate (2-APB), blocks uptake of Ca2+ into the endoplasmic reticulum (ER); thus, limiting release from ryanodine-sensitive internal stores to reduce the function of KCa channels. Exposure to 2-APB produces waves of hyperpolarization even during desensitization of the response to LPS and in the presence of doxapram. This finding in this study suggests that doxapram blocked the acid-sensitive K2p tandem-pore channel subtype known in mammals. Doxapram blocked LPS-induced hyperpolarization and depolarized the muscles as well as induced motor neurons to produce evoked excitatory junction potentials (EJPs). This was induced by depolarizing motor neurons, similar to the increase in extracellular K+ concentration. The hyperpolarizing effect of LPS was not blocked by decreased extracellular Ca2+or the presence of Cd2+. LPS appears to transiently activate doxapram sensitive K2p channels independently of KCa channels in hyperpolarizing the muscle. Septicemia induced by gram-negative bacteria results in an increase in inflammatory cytokines, primarily induced by bacterial LPS. Currently, blockers of LPS receptors in mammals are unknown; further research on doxapram and other K2p channels is warranted. (220 words).


Assuntos
Doxapram , Canais de Potássio de Domínios Poros em Tandem , Animais , Doxapram/farmacologia , Potenciais da Membrana , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Lipopolissacarídeos/toxicidade , Rianodina/farmacologia , Mamíferos
16.
Nat Commun ; 14(1): 1036, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823422

RESUMO

Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Venenos de Escorpião , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Rianodina/farmacologia , Sequência de Aminoácidos , Peptídeos/química , Venenos de Escorpião/farmacologia , Venenos de Escorpião/química
17.
Biochim Biophys Acta Gen Subj ; 1867(4): 130313, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36693454

RESUMO

Calmodulin (CaM) modulates the activity of several proteins that play a key role in excitation-contraction coupling (ECC). In cardiac muscle, the major binding partner of CaM is the type-2 ryanodine receptor (RyR2) and altered CaM binding contributes to defects in sarcoplasmic reticulum (SR) calcium (Ca2+) release. Many genetic studies have reported a series of CaM missense mutations in patients with a history of severe arrhythmogenic cardiac disorders. In the present study, we generated four missense CaM mutants (CaMN98I, CaMD132E, CaMD134H and CaMQ136P) and we used a CaM-RyR2 co-immunoprecipitation and a [3H]ryanodine binding assay to directly compare the relative RyR2-binding of wild type and mutant CaM proteins and to investigate the functional effects of these CaM mutations on RyR2 activity. Furthermore, isothermal titration calorimetry (ITC) experiments were performed to investigate and compare the interactions of the wild-type and mutant CaM proteins with various synthetic peptides located in the well-established RyR2 CaM-binding region (3584-3602aa), as well as another CaM-binding region (4255-4271aa) of human RyR2. Our data revealed that all four CaM mutants displayed dramatically reduced RyR2 interaction and defective modulation of [3H]ryanodine binding to RyR2, regardless of LQTS or CPVT association. Moreover, our isothermal titration calorimetry ITC data suggest that RyR2 3584-3602aa and 4255-4271aa regions interact with significant affinity with wild-type CaM, in the presence and absence of Ca2+, two regions that might contribute to a putative intra-subunit CaM-binding pocket. In contrast, screening the interaction of the four arrhythmogenic CaM mutants with two synthetic peptides that correspond to these RyR2 regions, revealed disparate binding properties and signifying differential mechanisms that contribute to reduced RyR2 association.


Assuntos
Calmodulina , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Calmodulina/química , Mutação , Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(4): e2117503120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649401

RESUMO

Resting skeletal muscle generates heat for endothermy in mammals but not amphibians, while both use the same Ca2+-handling proteins and membrane structures to conduct excitation-contraction coupling apart from having different ryanodine receptor (RyR) isoforms for Ca2+ release. The sarcoplasmic reticulum (SR) generates heat following Adenosine triphosphate (ATP) hydrolysis at the Ca2+ pump, which is amplified by increasing RyR1 Ca2+ leak in mammals, subsequently increasing cytoplasmic [Ca2+] ([Ca2+]cyto). For thermogenesis to be functional, rising [Ca2+]cyto must not interfere with cytoplasmic effectors of the sympathetic nervous system (SNS) that likely increase RyR1 Ca2+ leak; nor should it compromise the muscle remaining relaxed. To achieve this, Ca2+ activated, regenerative Ca2+ release that is robust in lower vertebrates needs to be suppressed in mammals. However, it has not been clear whether: i) the RyR1 can be opened by local increases in [Ca2+]cyto; and ii) downstream effectors of the SNS increase RyR Ca2+ leak and subsequently, heat generation. By positioning amphibian and malignant hyperthermia-susceptible human-skinned muscle fibers perpendicularly, we induced abrupt rises in [Ca2+]cyto under identical conditions optimized for activating regenerative Ca2+ release as Ca2+ waves passed through the junction of fibers. Only mammalian fibers showed resistance to rising [Ca2+]cyto, resulting in increased SR Ca2+ load and leak. Fiber heat output was increased by cyclic adenosine monophosphate (cAMP)-induced RyR1 phosphorylation at Ser2844 and Ca2+ leak, indicating likely SNS regulation of thermogenesis. Thermogenesis occurred despite the absence of SR Ca2+ pump regulator sarcolipin. Thus, evolutionary isolation of RyR1 provided increased dynamic range for thermogenesis with sensitivity to cAMP, supporting endothermy.


Assuntos
Músculo Esquelético , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Isoformas de Proteínas/metabolismo , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Termogênese , Anfíbios
20.
Am J Physiol Endocrinol Metab ; 324(1): E42-E55, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36449570

RESUMO

The release of peptide hormones is predominantly regulated by a transient increase in cytosolic Ca2+ concentration ([Ca2+]c). To trigger exocytosis, Ca2+ ions enter the cytosol from intracellular Ca2+ stores or from the extracellular space. The molecular events of late stages of exocytosis, and their dependence on [Ca2+]c, were extensively described in isolated single cells from various endocrine glands. Notably, less work has been done on endocrine cells in situ to address the heterogeneity of [Ca2+]c events contributing to a collective functional response of a gland. For this, ß cell collectives in a pancreatic islet are particularly well suited as they are the smallest, experimentally manageable functional unit, where [Ca2+]c dynamics can be simultaneously assessed on both cellular and collective level. Here, we measured [Ca2+]c transients across all relevant timescales, from a subsecond to a minute time range, using high-resolution imaging with a low-affinity Ca2+ sensor. We quantified the recordings with a novel computational framework for automatic image segmentation and [Ca2+]c event identification. Our results demonstrate that under physiological conditions the duration of [Ca2+]c events is variable, and segregated into three reproducible modes, subsecond, second, and tens of seconds time range, and are a result of a progressive temporal summation of the shortest events. Using pharmacological tools we show that activation of intracellular Ca2+ receptors is both sufficient and necessary for glucose-dependent [Ca2+]c oscillations in ß cell collectives, and that a subset of [Ca2+]c events could be triggered even in the absence of Ca2+ influx across the plasma membrane. In aggregate, our experimental and analytical platform was able to readily address the involvement of intracellular Ca2+ receptors in shaping the heterogeneity of [Ca2+]c responses in collectives of endocrine cells in situ.NEW & NOTEWORTHY Physiological glucose or ryanodine stimulation of ß cell collectives generates a large number of [Ca2+]c events, which can be rapidly assessed with our newly developed automatic image segmentation and [Ca2+]c event identification pipeline. The event durations segregate into three reproducible modes produced by a progressive temporal summation. Using pharmacological tools, we show that activation of ryanodine intracellular Ca2+ receptors is both sufficient and necessary for glucose-dependent [Ca2+]c oscillations in ß cell collectives.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Citosol/metabolismo , Rianodina/metabolismo , Rianodina/farmacologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...